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ABSTRACT

The potential of Bayesian model averaging (BMA) and heteroscedastic censored logistic regression

(HCLR) to postprocess precipitation ensembles is investigated. For this, outputs from the National Oceanic

and Atmospheric Administration’s (NOAA’s) National Centers for Environmental Prediction (NCEP)

11-memberGlobal Ensemble Forecast SystemReforecast, version 2 (GEFSRv2), dataset are used. As part of

the experimental setting, 24-h precipitation accumulations and forecast lead times of 24 to 120 h are used, over

themid-Atlantic region (MAR) of theUnited States. In contrast with previous postprocessing studies, a wider

range of forecasting conditions is considered here when evaluating BMAandHCLR.Additionally, BMAand

HCLR have not yet been compared against each other under a common and consistent experimental setting.

To compare and verify the postprocessors, different metrics are used (e.g., skills scores and reliability dia-

grams) conditioned upon the forecast lead time, precipitation threshold, and season. Overall, HCLR tends to

slightly outperformBMAbut the differences among the postprocessors are not as significant. In the future, an

alternative approach could be to combine HCLR with BMA to take advantage of their relative strengths.

1. Introduction

Numerical weather prediction (NWP)models are used,

as part of an ensemble prediction system (EPS), to gen-

erate ensemble forecasts of a future weather variable or

quantity (Tracton and Kalnay 1993; Toth et al. 2003;

Buizza et al. 2005). The ensemble forecasts, in turn, can

be used to determine the probability and uncertainty of

the weather variable. In the case of precipitation fore-

casts, however, the magnitude and dispersion of the en-

semble forecasts are normally characterized by the

presence of biases (Sloughter et al. 2007; Wilks 2009),

which makes the determination of forecast probabilities

from such ensembles unreliable. To correct the biases and

improve the reliability of ensemble forecasts, a number of

techniques have been developed and implemented (e.g.,

Raftery et al. 2005; Wilks 2006b; Bröcker and Smith

2008). These techniques are collectively known as sta-

tistical weather postprocessing or calibration.

Postprocessing for ensemble prediction systems has

several goals: correct systematic forecast errors or bia-

ses, which can be achieved by optimally weighting en-

semble members according to past performance, and

correct (calibrate) ensemble spread so that it is a useful

estimate of forecast uncertainty. Some of the available

techniques for postprocessing weather forecasts are

regression-based methods (Bremnes 2004; Clark and

Hay 2004; Hamill et al. 2004; Friederichs and Hense

2007; Wilks 2009; Roulin and Vannitsem 2012; Messner

et al. 2014a,b), Gaussian ensemble dressing (Roulston

and Smith 2003;Wang and Bishop 2005), nonparametric

methods (Brown and Seo 2010), and Bayesian model

averaging (BMA) (Raftery et al. 2005; Sloughter et al.

2007; Schmeits and Kok 2010), among others (e.g., Wu

et al. 2011). Many of these techniques share in common

the model output statistics (MOS) approach (Glahn andCorresponding author e-mail: AlfonsoMejia, amejia@engr.psu.edu
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Lowry 1972; Wilks 2006b) since, as part of their meth-

odology, they require the derivation of statistical fore-

cast equations as a function of one or more outputs

(predictors) from the NWP model. Additionally, some

of the postprocessing techniques allow the complete

characterization of the predictive probability density

function (pdf) of precipitation forecasts (Sloughter et al.

2007; Wilks 2009; Messner et al. 2014b).

Some of the techniques mentioned have been eval-

uated for the case of ensemble precipitation forecasts

(Sloughter et al. 2007; Wilks and Hamill 2007; Wilks

2009; Brown and Seo 2010; Schmeits and Kok 2010;

Messner et al. 2014a,b; Zhu et al. 2015). For instance,

Sloughter et al. (2007) extended the BMA approach

introduced by Raftery et al. (2005) to the case of en-

semble precipitation forecasts. As a statistical weather

postprocessor, BMA generates bias-corrected pre-

dictive pdfs from the ensemble forecasts (Sloughter

et al. 2007; Fraley et al. 2010). Bremnes (2004) em-

ployed quantile regression to estimate the conditional

quantiles of future precipitation using the forecast

precipitation amounts as predictors, alongside other

weather-related variables such as the mean relative

humidity and wind flow. Wilks (2009) proposed and

implemented the extended logistic regression (ELR)

approach to include the threshold quantiles of the

precipitation forecast as predictor variables, as op-

posed to relying on the precipitation amounts alone.

Messner et al. (2014a) complemented the ELR ap-

proach by including the precipitation ensemble spread

as a predictor. They termed this approach hetero-

scedastic extended logistic regression (HELR). They

also proposed two additional logistic regression-based

approaches for postprocessing precipitation: hetero-

scedastic ordered logistic regression (HOLR) and

heteroscedastic censored logistic regression (HCLR)

(Messner et al. 2014b). It is useful to note that HCLR

fits the same model as HELR, with the only difference

being that the HCLR parameters optimize the con-

tinuous predictive pdf, as opposed to the quantile

thresholds (Messner et al. 2014b).

A few precipitation postprocessing studies have

compared the performance of different postprocessing

techniques under a common set of experimental condi-

tions, for example, by using the same geographic region,

dataset, and training period to evaluate the post-

processors (Wilks 2006a; Sloughter et al. 2007; Schmeits

and Kok 2010; Mendoza et al. 2015; Messner et al.

2014b). The general findings from these studies indicate

that the performance of the postprocessors, both rela-

tive to sampled climatological conditions and to each

other, vary depending on the training strategy

(Greybush et al. 2008; Zhu et al. 2015), verification

metric considered (Mendoza et al. 2015), forecast lead

time (Schmeits and Kok 2010), and bias-correction type

(Schmeits and Kok 2010; Erickson et al. 2012), among

other factors.

In this study, our primary goal is to assess and verify

the potential of BMA and HCLR to postprocess pre-

cipitation ensemble reforecasts from the National Oce-

anic and Atmospheric Administration’s (NOAA’s)

National Centers for Environmental Prediction (NCEP)

11-member Global Ensemble Forecast System Refor-

ecast version 2 (GEFSRv2).We employGEFSRv2 since

its reforecasts, based on a consistent model run, are

available over a long time period. This is relevant be-

cause forecasts produced by a model whose structure

changes in time will produce less statistically consis-

tent forecasts. Although this situation may be un-

avoidable in operational forecasting, it should be

avoided when interest lies in assessing the perfor-

mance of different postprocessors. We use multisensor

precipitation estimates (MPEs) as the observed pre-

cipitation when training the postprocessors and verifying

the raw and postprocessed ensemble precipitation

forecasts. Additionally, we highlight that our evalua-

tion here of BMA is more comprehensive than pre-

vious ones since we account for the effect of training

period length, spatial pooling strategy, lead time, and

seasonality on the BMA postprocessed precipitation

forecasts. Moreover, BMA and HCLR have not been

compared against each other yet.

We select BMA and HCLR for this study for various

reasons. BMA is desirable because it provides an in-

tegrated approach for combing ensemble members

from a single or multiple NWP models. At the same

time, techniques based on logistic regression have been

shown to perform as well as or slightly better than BMA

in several applications (Sloughter et al. 2007; Schmeits

and Kok 2010), while being less computationally de-

manding. The latter becomes particularly relevant when

working with long reforecast datasets. Furthermore,

HCLR has recently been shown to outperform and

overcome key shortcomings of other logistic regression-

based techniques, such as allowing the determination

of the full predictive pdf of precipitation forecasts

(Messner et al. 2014a).

Key questions that we seek to address with this study

are as follows: How does the BMA and HCLR post-

processed forecasts compare against the raw pre-

cipitation ensembles? What is the dependence

between the performance of the postprocessors and

the forecast lead time, training period length, spatial

pooling, seasonality, and precipitation threshold?

Which postprocessing method is more reliable for the

U.S. mid-Atlantic region (MAR)? The remainder of
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the article is organized as follows. In section 2, we

describe the study area, datasets, and methodology

employed. The main results are examined in section 3.

Section 4 discusses the results. Last, section 5 sum-

marizes the key findings.

2. Data and methodology

a. Study area

The U.S. MAR is selected as the study area. The

geographic location and boundary of the MAR is il-

lustrated in Fig. 1. The MAR comprises the state of

Delaware and the District of Columbia, along with

parts of the states of Maryland, New York, New Jersey,

Pennsylvania, Virginia, and West Virginia (Polsky

et al. 2000; Greene et al. 2005). It only occupies ap-

proximately 5% of the total landmass of the United

States, but it contains approximately 10% of its pop-

ulation (;41 million people) (Siddique et al. 2015).

Some of the largest metropolitan areas in the United

States are located in the MAR (e.g., Baltimore, Phila-

delphia, and Washington, D.C.) Additionally, the

MAR comprises several major U.S. river basins in-

cluding the Delaware, Susquehanna, Potomac, and

James Rivers. The climate in the MAR is relatively

humid. The average annual temperature is approxi-

mately 118C and the mean annual precipitation is ap-

proximately 900–1200mm (Polsky et al. 2000).

b. GEFSRv2

For the precipitation ensemble forecasts, we use

outputs from the GEFSRv2 dataset. GEFSRv2 are the

retrospective forecasts produced using the 2012 op-

erational version (version 9.0.1) of the NCEP’s Global

Ensemble Forecast System (Hamill et al. 2013). The

model runs for the GEFSRv2 were initiated once a day

at 0000 coordinated universal time (UTC) (Hamill

et al. 2013). Initial conditions were perturbed using the

ensemble transform technique with rescaling (Wei

et al. 2008). The forecast lead times extend from 1 to

16 days and each forecast cycle consists of forecasts

valid for 3-hourly accumulations from day 1 to day 3

and 6-hourly accumulations from day 4 to day 16. We

use here for the evaluation of the postprocessors 24-h

accumulations from days 1 to 5. The native resolution

of the reforecasts is ;0.58 on a Gaussian grid for

forecasts in the first week and ;0.678 for forecasts in
the second week. The GEFSRv2 data are also avail-

able at the ;18 resolution for the entire range of lead

times (days 1–16). We use here the 18 resolution

dataset to facilitate coverage of the entire MAR.

Further details about the GEFSRv2 dataset or in-

formation on how to access it are provided elsewhere

(Hamill et al. 2013, 2016). An important aspect of the

GEFS reforecasts are that they use a single model and

single set of physics packages, perturbing only initial

conditions, with small stochastic perturbations during

the forecast phase; this is in contrast to systems like the

Short-Range Ensemble Forecast (SREF) that employ

different dynamical cores and physics options within

an ensemble.

c. MPEs

Weusemultisensor precipitation estimates (MPEs) to

train the postprocessors and verify the raw and post-

processed ensemble precipitation forecasts. The MPEs

were provided by the NOAA’s Mid-Atlantic River

Forecast Center (MARFC) (Lawrence et al. 2003).

Similar to the NCEP stage-IV MPEs (Prat and Nelson

2015), the MARFC MPE product combines radar esti-

mated precipitation with in situ gauge measurements

over the MAR and represents a continuous time series

of hourly, high-resolution gridded precipitation obser-

vations at 4 3 4 km2 cells. We aggregated the MPEs to

the temporal (24 h) and spatial scale (18) of the

GEFSRv2 data over the period 2002–07. Note that

MPEs are subject to errors, such as radar artifacts, but

they are also one of the best high-resolution gridded

FIG. 1. Map illustrating the geographic domain of the U. S.

MAR. The map also shows the major rivers, urban areas, and the

GEFSRv2 grid. The inset illustrates the location of the MAR

within the eastern portion of the United States.
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precipitation datasets available (Prat and Nelson 2015)

and therefore appropriate for this study.

d. Postprocessing techniques

1) BMA

A brief overview of the BMA technique as used for

the postprocessing of ensemble precipitation forecasts is

provided here since a detailed description is provided

elsewhere (Sloughter et al. 2007). As a statistical

weather postprocessor, BMA generates bias-corrected

predictive pdfs from the ensemble forecasts (Sloughter

et al. 2007; Fraley et al. 2010). Specifically, the BMA

predictive pdf is a weighted average of pdfs centered on

the individual bias-corrected precipitation forecasts.

The weights reflect the predictive skill of the individual

ensemble members over a selected training period.

The BMA predictive pdf, P(y j f1, . . . , fk), for the cube
root of precipitation accumulation y, given the forecast

members f1, . . . , fk at a particular lead time, is given by

P(y j f
1
, . . . , f

k
)5 �

K

k51

w
k
fP( y5 0 j f

k
)I[y5 0]1P( y. 0 j f

k
)g

k
( y j f

k
)I[ y. 0]g . (1)

The weight wk is the posterior probability of ensemble

member k being the best one, provided that�K

k51wk 5 1.

Here K is the total number of ensemble members; K 5
11 for the GEFSRv2 data. The weights are specified

according to the relative performance of each ensemble

member during the training period employed for pa-

rameter estimation. The precipitation forecasts are

transformed via the cube root since this transformation

has been found to improve the modeling of P(y . 0 j fk)
(Sloughter et al. 2007), which is normally represented

by a gamma pdf as further explained in the next para-

graphs. Note that we tried other transformations (square

and fourth root) but the cube root performed better. The

term P(y 5 0 j fk) is the probability of the cube root of

precipitation being equal to zero given the forecast

member fk and assuming that fk is the best forecast

member. The term I[.] is the indicator function that is

equal to 1 if the term inside the brackets holds true and

0 otherwise. The term P(y . 0 j fk) is the probability of

the cube root of precipitation being greater than 0 given

the forecast member fk and assuming that fk is the best

forecast member.

The term P(y 5 0 j fk) is determined as

P(y5 0 j f
k
)5L[g( f

k
)]5

exp[g( f
k
)]

11 exp[g( f
k
)]
, (2)

where L(.) denotes the cumulative distribution function

(cdf) of the standard logistic distribution and g(fk) is

defined as

g( f
k
)5 a

0,k
1 a

1,k
f 1/3k 1 a

2,k
«
k
. (3)

Equation (3) is a logistic regression with parameters

ai,k (i5 1, 2, 3) that need to be estimated for each ensemble

member k. The predictor «k is equal to 1 if fk 5 0 and

0 otherwise. The parameters in Eq. (3) are determined

directly from the ensemble forecast and observed data,

using logistic regression with precipitation/no precipi-

tation as the dependent variable, and f 1/3k and «k as the

two predictor variables.

The term P(y . 0 j fk) is equal to 1 2 P(y 5 0 j fk)
while g(y j fk) is defined as

g
k
(y j f

k
)5

1

b
ak

k G(a
k
)
yak21 exp(2y/b

k
) (4)

for y. 0, and g(y)5 0 for y5 0. Equation (4) is a gamma

pdf with shape parameter ak 5m2
k/s

2
k and scale param-

eter bk 5s2
k/mk. The mean mk and variance s2

k of this

distribution depend on fk as follows:

m
k
5 b

0,k
1 b

1,k
f 1/3k (5)

and

s2
k 5 c

0
1 c

1
f
k
. (6)

The parameters bi,k (i 5 0, 1) in Eq. (5) are member

specific. They are determined separately for each en-

semble member using linear regression with the cube

root of the observed precipitation amount as the de-

pendent variable and f 1/3k as the predictor variable.

Last, using the training data, the parameters c0 and c1 in

Eq. (6), as well as the terms wk (k 5 1, . . . , K) in Eq. (1)

are estimated by maximum likelihood, as in Sloughter

et al. (2007). The approach of Sloughter et al. (2007)

maximizes the log-likelihood function numerically using

the expectation-maximization algorithm (Dempster et al.

1977; McLachlan and Krishnan 1997, 361–369).

To implement the BMA postprocessor, we use 24-h

precipitation accumulations from theGEFSRv2 for lead

times from 24 to 120 h. To train the BMA, we use the

sliding time window approach of Sloughter et al. (2007).

In this approach, a sliding time window comprising theL

training days preceding the forecast day is used. The
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window moves with the forecast day (i.e., the day the

forecast is issued) and, typically, it comprises the pre-

ceding 20–40 days prior to the forecast day. We use this

same approach here with one important modification.

We select training days from the 4 years preceding the

forecast day using the same calendar days in each year,

as opposed to just using training days from a single year.

For example, for a GEFSRv2 reforecast issue on

31 March 2005, we select as the training data the days

from 1 to 30March (assuming a 30-day training window)

in the years 2002–05; thus, we use in this example a total

of 120 training days [i.e., (30 days) 3 (4 years)]. We

select the size of the training window empirically by

testing different window sizes.

Additionally, when training the BMA algorithm, it is

common to rely on spatial pooling to increase the sample

size of the training dataset. However, very few studies

have assessed the effect of spatial pooling on the per-

formance of BMA, particularly in the context of pre-

cipitation (Kleiber et al. 2011). Thus, we evaluate here

the effect of spatial pooling on the BMA algorithm by

varying the number of GEFSRv2 cells that are used for

training. In this study, we select a total of 20 GEFSRv2

cells since they cover the majority of the geographic do-

main of theMAR. To test different training scenarios, we

use 1, 5, 10, and 20 neighboring cells to train the BMA

algorithm. The 1 cell scenario means that each cell is

trained individually without pooling data from the other

cells. In contrast, the 5 cells scenario means that the 20

GEFSRv2 cells that encompass the MAR are divided

into 4 groups of neighboring cells with 5 cells in each

group; each group is then trained separately by pooling

the data from its 5 cells. For example, for the case of 5

cells and a 30-day sliding window, we use 6600 reforecasts

to train the BMA algorithm at a given forecast day [i.e.,

(30 days) 3 (5 cells) 3 (4 years) 3 (11 members)].

Our previous description of BMA assumes that the

ensemble members are individually distinguishable

where distinct weights may have a physical interpre-

tation. In our BMA postprocessing experiment, how-

ever, all the ensemble members come from the same

NWP model, which means that the members lack in-

dividually distinguishable physical features. In this

situation, the ensemble members are exchangeable,

whichmeans that the BMAweights can be assumed to be

equal (Fraley et al. 2010; Schmeits and Kok 2010) [i.e.,wk

in Eq. (1) is equal to 1/K]. Additionally, the exchange-

ability condition makes other parameter constraints

possible. Specifically, the parameters ai,k (i 5 1, 2, 3) in

Eq. (3) and bi,k (i5 0, 1) in Eq. (5) are the same for all the

exchangeable members that come from the same NWP

model so that ai,k 5 ai (i5 1, 2, 3) and bi,k 5 bi (i5 0, 1)

(Fraley et al. 2010; Schmeits and Kok 2010). Hereafter,

we use the term BMA to indicate the implementation

of BMA with exchangeable members. Furthermore,

we tested both approaches as part of this study (i.e.,

BMA with exchangeable and nonexchangeable mem-

bers), and found that in this case both approaches yield

very similar results. Hence, our focus here is going to

be on the implementation of BMA with exchangeable

members.

2) HCLR

HCLR is based on the logistic regression model

initially proposed by Hamill et al. (2004) to post-

process precipitation ensembles. In essence, HCLR

fits a logistic distribution to the transformed, in this

case the cube root of the ensemble mean, and bias-

corrected precipitation ensembles (Messner et al.

2014b). Note that the same cube root transformation is

used for both HCLR and BMA. Additionally, HCLR

uses the ensemble spread as a predictor, which allows

HCLR to consider uncertainty information contained

in the ensembles. We describe next the HCLR post-

processor as it evolved from the logistic regression

model of Hamill et al. (2004) and the extended version

of Wilks (2009).

The logistic regression model of Hamill et al. (2004) is

given by

P( y# q j x)5L[d(x)] , (7)

where L(.) denotes the cdf of the standard logistic dis-

tribution, y is the transformed precipitation, q is a

specified threshold, x is a predictor variable that de-

pends on the forecast members, and d(x) is a linear

function of the predictor variable x. Note that the vari-

able x could be replaced by a vector of predictor vari-

ables but here we use a single predictor as described in

the next few paragraphs.

One limitation with Eq. (7) is that separate logistic

regressions with different linear functions d(x) need to

be fitted to each threshold of interest (Wilks 2009).

This results in logistic regressions that can cross each

other that, in turn, implies the occurrence of nonsense

negative probabilities. To overcome this limitation,

Wilks (2009) extended the logistic regression model by

adding another predictor variable for the threshold q

such that

P( y# q j x)5L[v(q)2 d(x)] , (8)

where the transformation v(.) is a monotone non-

decreasing function. In addition to avoiding negative

probabilities, Eq. (8) has the advantage that fewer pa-

rameters need to be estimated; instead of having a linear

function d(x) for each threshold, d(x) is now the same for
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all the thresholds. This can be particularly relevant when

dealing with small training datasets.

Furthermore, to appropriately utilize the uncertainty

information in the ensemble spread, Messner et al.

(2014a) proposed the HELR postprocessor. HELR uses

an additional predictor vector u to control the disper-

sion of the logistic predictive distribution,

P(y# q j x)5L

�
v(q)2d(x)

exp[h(u)]

�
, (9)

where h(.) is another linear function of the predictor

variable u. Note that u could be replaced by a vector of

predictor variables. The exponential function in the

denominator of Eq. (9) is used as a simple method to

ensure positive values (Messner et al. 2014a).

In HELR, the function d(x) is defined as

d(x)5 d
0
1 d

1
x , (10)

where d0 and d1 are parameters that need to be esti-

mated, and x5 1/K�K

k51f
1/3
k , that is, the predictor vari-

able x is the mean of the transformed, via the cube root,

ensemble forecasts. h(u) is defined as

h(u)5 e
0
1 e

1
u , (11)

where e0 and e1 are parameters that need to be esti-

mated, and u is the standard deviation of the cube root

transformed precipitation ensemble forecasts.

To determine the parameters associated with Eq. (9),

maximum likelihood estimation with the log-likelihood

function is used (Messner et al. 2014a,b). For this, one

needs to determine the predicted probability pi of the

ith observed outcome.When determining pi, one should

account for the fact that y $ 0. One variation of the

HELR postprocessor that can easily accommodate

nonnegative variables that are continuous for positive

values and have a natural threshold at zero, such as

precipitation amounts, is censored regression or, as

termed byMessner et al. (2014b), HCLR. For HCLR, pi

can be expressed as (Messner et al. 2014b)

p
i
5

8>>>><
>>>>:

L

�
v(0)2d(x)

exp[h(u)]

�
y
i
5 0

l

�
v(y

i
)2d(x)

exp[h(u)]

�
y
i
. 0,

(12)

where lf.g denotes the likelihood function of the stan-

dard logistic function. In essence, HCLR fits a logistic

error distribution with point mass at zero to the trans-

formed predictand. Such an error distribution appears

reasonable for dealing with the transformed precipitation

amounts (Schefzik et al. 2013; Scheuerer 2014). As was

the case with BMA, to implement the HCLR post-

processor, we use 24-h precipitation accumulations from

the GEFSRv2 for lead times from 24 to 120h. To train

the HCLR postprocessor, the same sliding time window

approach as in BMA is used.

e. Verification strategy

To verify the raw and postprocessed ensemble pre-

cipitation forecasts, we use the Ensemble Verification

System (EVS) (Brown et al. 2010). Also, different

metrics are used for the verification analysis, including

the Brier skill score (BSS), continuous ranked proba-

bility skill score (CRPSS), and reliability diagram. The

decomposed components of the CRPS are also exam-

ined. The definition of each of these metrics is provided

in the appendix. Additional details about the verifica-

tion metrics can be found elsewhere (e.g., Wilks 2010;

Jolliffe and Stephenson 2012). To assess the uncertainty

of the verification metrics, the 90% error bars are

computed using the block bootstrapping technique

(Politis and Romano 1994).

For the verification analysis, we use two years of

data, 2006 and 2007; the remaining years, 2002–05, are

used to train the postprocessors. The verification is

done conditionally upon the season, lead time, and

precipitation threshold. The summer (June–August)

and fall (September–November) months are the two

seasons considered for lead times from 24 to 120 h. For

the precipitation threshold, a low (precipitation. 0mm)

and high (precipitation. 10mm) precipitation threshold

are used. For the low and high precipitation threshold,

precipitation amounts greater than that implied by a

nonexceedance probability, in the sampled climatological

probability distribution, of 0.3 (;0mm) and 0.9 (;10mm)

are selected, respectively. Additionally, we assess the ef-

fect on the postprocessed forecasts of spatially pooling

data to train the postprocessors.

3. Results

a. Selection of the training length for BMA

An initial step in implementing the BMA post-

processor is to determine the appropriate training length

for the sliding time window approach of BMA (Fraley

et al. 2010; Sloughter et al. 2007). If the length of the

training window is too short or too long, the perfor-

mance of BMA can become suboptimal or less skillful.

To assess the effect of the training length on the per-

formance of BMA, we plot the BSS (relative to sampled

climatology) against the training length for the low

precipitation threshold (.0mm) in the summer (Figs. 2a
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and 2b) and fall (Figs. 2c and 2d). We find that the BSS

tends to peak or reach a maximum value at a training

length of ;25 days [i.e., (25 days) 3 (4 years) (Fig. 2)].

For themost part, after 25 days the value of BSS declines

(Fig. 2). This is the case for both forecast lead times of 1

(Figs. 2a and 2c for the summer and fall, respectively)

and 5 days (Figs. 2b and 2d for the summer and fall,

respectively). The results are similar independently of

the number of GEFSRv2 cells used to train the BMA

algorithm (Fig. 2) (i.e., the optimum value of the training

length still tends to be ;25 days). For example, in

Fig. 2a, when using 20 cells or training each cell sepa-

rately (1 cell), both curves reach a maximum at 25 days.

Figure 3 shows the same information as Fig. 2 but plots

instead the CRPSS (relative to sampled climatology)

against the training length. In Fig. 3, the general ten-

dency is as in Fig. 2, the skill of the BMA postprocessed

forecasts tends to reach a maximum at ;25 days. We

also evaluated (not shown) the effect of the training

window length on the HCLR postprocessor and found

that it does not have a significant impact on the perfor-

mance of HCLR. Because of this, and to implement the

postprocessors under similar conditions, hereafter the

same window length of 25 days is used to train and im-

plement both postprocessors.

b. Effect of spatial pooling on the performance of the
postprocessors

To assess the effect of spatial pooling on the perfor-

mance of the postprocessors, we plot the BSS (relative

to sampled climatology) against the number of cells used

to train the BMA and HCLR postprocessors (Figs. 4a

and 4b for the summer and fall, respectively). Note that

the same training window length of 25 days is used for

BMA and HCLR. The forecasts from both post-

processors show notable gains in skill relative to the raw

ensembles for the summer (Fig. 4a) but the gains seem

largely insignificant for the fall (Fig. 4b). The general

tendency in Fig. 4, nevertheless, is for the BSS to mar-

ginally decline as the number of cells used for training

are increased. Additionally, the HCLR seems to per-

form slightly better than BMA (Fig. 4a).

We also show the CRPSS (relative to sampled cli-

matology) as a function of the number of cells used to

train the BMA and HCLR postprocessors for the sum-

mer (Fig. 5a) and fall (Fig. 5b). For the summer (Fig. 5a),

FIG. 2. BSS (relative to sampled climatology) for the low precipitation threshold (.0mm) vs the BMA training

length for forecast lead times of (a) 1 and (b) 5 days during the summer and lead times of (c) 1 and (d) 5 days during

the fall. The different BSS curves represent the number of cells used to train the BMA.
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the postprocessors seem to significantly improve upon

the raw ensembles, and the skill declines slightly as ad-

ditional cells are used to train the postprocessors, as was

the case with the BSS (Fig. 4a). For the fall (Fig. 5b),

only HCLR seems able to improve upon the raw en-

sembles. However, overall the differences in skill be-

tween the postprocessors appear not as significant,

particularly in the summer (Fig. 5a).

According to the results in Figs. 4 and 5, for the re-

mainder of our analysis, we train the postprocessors

separately at each GEFSRv2 cell since this approach

seems to perform somewhat better than when cells are

spatially pooled. Note that this is different from the way

BMA is normally implemented (Sloughter et al. 2007;

Fraley et al. 2010). Spatial pooling is normally required

by BMA to increase the sample size used for training

because the typical training window length of 25–30 days

is small. We are less constrained here by the length of

the training window since we sample data from the

previous four years when training the postprocessors.

This is feasible in this case because we are working with

reforecasts but it may not be as feasible when dealing

with outputs from an actual forecasting system. Another

reason why the single cell training for BMA performs

better here than in previous studies (Sloughter et al.

2007; Fraley et al. 2010) may be due to the fact that our

application, based on a global forecasting system, re-

lies on lower-spatial-resolution forecasts than previous

ones. Previous applications have tended to rely on

higher-resolution regional forecasting systems where

neighboring cells may bemore similar to each other than

in the GEFSRv2.

c. Verification of the raw and postprocessed
precipitation ensembles

1) BSS

The BSS (relative to sampled climatology) indicates

that generally the skill of the postprocessed ensemble

precipitation forecasts is improved relative to the raw

ensembles (Fig. 6). The relative improvements in skill

are generally greater in the summer (Figs. 6a and 6b)

than fall (Figs. 6c and 6d). Additionally, the improve-

ments tend to be greater for the low precipitation

threshold (.0mm) (Fig. 6c) than the high threshold

(.10mm) (Fig. 6d). Overall, the skills gain from

FIG. 3. CRPSS (relative to sampled climatology) vs the BMA training length for forecast lead times of (a) 1 and

(b) 5 days during the summer and lead times of (c) 1 and (d) 5 days during the fall. The different CRPSS curves

represent the number of cells used to train the BMA.
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postprocessing decline with increasing lead time. For

example, for the high precipitation threshold (.10mm)

in the fall (Fig. 6d), the BSS associated with the post-

processors is slightly better than the BSS of the raw

ensembles at a forecast lead time of 1 day; however, the

BSS of the postprocessed ensembles becomes slightly

less at a lead time of 5 days. Contrasting the post-

processors against each other, it appears that the general

tendency is for the postprocessors to perform similarly

(Fig. 6). TheHCLR, however, tends to show a slight skill

FIG. 4. BSS (relative to sampled climatology) for the high precipitation threshold (.10mm) vs the number of

cells used to train the postprocessors during the (a) summer and (b) fall. The different BSS curves represent the raw

and postprocessed precipitation ensembles. The figure is for a forecast lead time of 4 days.

FIG. 5. CRPSS (relative to sampled climatology) vs the number of cells used to train the postprocessors during the

(a) summer and (b) fall. The different CRPSS curves represent the raw and postprocessed precipitation ensembles.

The figure is for a forecast lead time of 5 days.
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gain over BMA across lead times, precipitation thresh-

olds, and seasons (Fig. 6).

The plot of the BSS (relative to sampled climatology)

against the nonexceedance probability associated with

different precipitation thresholds (Fig. 7) further con-

firms the findings from Fig. 6. It demonstrates that for

the most part the postprocessors behave similarly with

respect to each other. Additionally, the trend in the BSS

for the postprocessed forecasts tends to mimic the be-

havior of the raw ensembles during the fall but not the

summer. For example, the BSS values, for both the raw

and postprocessed forecasts in the fall, tend to increase

with the precipitation threshold (Fig. 7c) while differ-

ences in the trend between the raw and postprocessed

forecasts are evident in the summer (Fig. 7b). Also, as

was the case in Fig. 6, the gains in skill from post-

processing are somewhat more noticeable in the sum-

mer (Figs. 7a and 7b) than fall (Figs. 7c and 7d), and

generally the gains in skill are reduced for the longer

forecast lead times (e.g., day 2 in Fig. 7c and day 5 in

Fig. 7d). Indeed, at a lead time of 2 days in the fall

(Fig. 7c), the postprocessed ensembles outperform the

raw ensembles across probability thresholds. In contrast,

at a lead time of 5 days in the fall (Fig. 7d), the post-

processed ensembles outperform the raw ensembles for

probability thresholds less than 0.9 but at a probability

threshold of 0.9 the raw ensembles exhibit a slightly

better skill than the postprocessed ensembles.

2) CRPSS

TheCRPSS (relative to sampled climatology) shows that

the postprocessed precipitation ensembles are overallmore

skillful than the raw ensembles across lead times and sea-

sons (Fig. 8). As was the case with the BSS (Figs. 6 and 7),

the relative gains in skill from postprocessing are greater

in the summer (Fig. 8a) than in the fall (Fig. 8b), but the

overall skill of the raw aswell as postprocessed ensembles

is significantly better in the fall than the summer. Fur-

thermore, contrasting the postprocessors against each

other, HCLR tends to slightly outperformBMA. Indeed,

for the fall, only HCLR shows improvements upon the

raw ensembles at a forecast lead time of 5 days.

FIG. 6. BSS (relative to sampled climatology) for the (a) low (.0mm) and (b) high (.10mm) precipitation

threshold during the summer vs the forecast lead time. BSS for the (c) low (.0mm) and (d) high (.10mm)

precipitation threshold during the fall vs the forecast lead time. The different BSS curves represent the raw and

postprocessed precipitation ensembles.
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The CRPS can be decomposed into a reliability

(CRPSrel) and potential (CRPSpot) component (Hersbach

2000). The CRPSrel measures the ability of the pre-

cipitation ensembles to generate cumulative distributions

that have, on average, the correct or desired statistical

properties. While the CRPSpot measures the CRPS that

one would obtain for a perfect reliable system. The

decomposition of the CRPS shows that the gains in skill

from postprocessing are mainly related to improve-

ments in CRPSrel (Fig. 9a). Note that the CRPS, CRPSrel,

and CRPSpot have a negative orientation (i.e., smaller

values are better). The CRPS decomposition reveals that

the gains are considerably greater in the summer

(Fig. 9a) than fall (Fig. 9b). It also shows that HCLR

tends to have similar or even larger CRPSrel (Fig. 9a)

than BMA but a smaller CRPSpot. The reduction in

CRPSpot is the main source of improvement for HCLR

over BMA. This means that, in relation to the sampled

climatology, the resolution associated with HCLR is

likely better than that of BMA. This may be partly due

to the fact that HCLR uses the ensemble spread ex-

plicitly as a predictor of the dispersion of the predictive

pdf (Messner et al. 2014a) and the CRPSpot is sensitive

to the spread (Hersbach 2000). The CRPS decompo-

sition also illustrates the fact that BMA can improve

the reliability of the forecasts relative to the raw en-

sembles while at the same time reducing the overall

skill of the forecasts. This is observed in Fig. 9b at a

forecast lead time of 5 days where BMA has slightly

lower CRPSrel than the raw ensembles but much

higher CRPSpot.

3) RELIABILITY

According to the CRPS decomposition (Fig. 9), the

postprocessed ensemble precipitation forecasts tend to be

more reliable than the raw ensembles. This is further

confirmed using reliability diagrams under various fore-

casting conditions (Fig. 10). In Fig. 10, the reliability of the

postprocessed forecasts from BMA and HCLR is im-

proved relative to the raw ensembles across forecast

probabilities, lead times, and seasons. There is, however, a

tendency to underforecast the small forecast probabilities

in the summer (Fig. 10b) and fall (Fig. 10d) (i.e., the

postprocessed forecasts tend to be somewhat under-

confident). This tendency is significantlymore apparent in

the raw ensembles than in the postprocessed ones

FIG. 7. BSS (relative to sampled climatology) vs the precipitation threshold for forecast lead times of (a) 2 and

(b) 5 days during the summer and forecast lead times of (c) 2 and (d) 5 days during the fall. The different BSS curves

represent the raw and postprocessed precipitation ensembles.
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(Fig. 10a). For the larger forecast probabilities, the raw

ensembles tend to overforecast the forecast probabilities,

that is, the forecasts are overconfident, while the post-

processed ones seem, for the most part, to fix this over-

forecasting bias (Fig. 10c).

Contrasting BMAandHCLR against each other, they

both show similar reliability and sharpness (assessed by

examining the insets in Fig. 10). The reliability of the

postprocessors does not seem to vary greatly with the

season (Figs. 10a and 10c) or forecast lead time

(Figs. 10a and 10b). It does vary, however, with the

precipitation threshold. The reliability curves associ-

ated with each of the postprocessors show more vari-

ability for the high precipitation threshold (.10mm)

FIG. 9. Decomposition of the CRPS into CRPS reliability (CRPSrel) and CRPS potential (CRPSpot) for forecasts

lead times of 1, 3, and 5 days during the (a) summer and (b) fall. (from left to right) The three columns associated

with each forecast lead time represent the raw (R), BMA postprocessed (B), and HCLR postprocessed

(H) precipitation ensembles.

FIG. 8. CRPSS (relative to sampled climatology) for the ensemble precipitation forecasts vs the forecast lead

time during the (a) summer and (b) fall. The different CRPSS curves represent the raw and postprocessed

precipitation ensembles.
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(Fig. 11) than the low one (.0mm) (Fig. 10), which

seems to be due mainly to sample size effects. For the

high precipitation threshold, the raw ensembles are

strongly overconfident; they overforecast the larger

forecast probabilities (Figs. 11a and 11c). The over-

forecasting is stronger in the summer (Figs. 11a and 11b)

than the fall (Figs. 11c and 11d). Nonetheless, the re-

liability of the postprocessors is overall similar for the

high precipitation threshold (Fig. 11). In some cases,

forecasts from BMA seem more reliable than fore-

casts from HCLR (Figs. 10c and 11a) while in other

cases HCLR is more reliable (Figs. 10a, 10b, and 11c).

Both BMA and HCLR are, overall, able to improve

the biases in the raw ensembles to make them more

reliable.

4. Summary and discussion

Ensemble forecasts can be used to determine the

probability and uncertainty of a weather variable. In

the case of ensemble precipitation forecasts, the de-

termination of forecast probabilities from ensembles

is generally unreliable, because the magnitude and

dispersion of the ensemble forecasts are often charac-

terized by the presence of biases (Messner et al. 2014a,b;

Sloughter et al. 2007; Wilks 2009). Statistical post-

processing is, therefore, needed to correct the biases and

improve the reliability of ensemble precipitation fore-

casts. In this study, we assessed the potential of BMA

(Sloughter et al. 2007) and HCLR (Messner et al. 2014b)

to postprocess precipitation ensembles from the 11-

member GEFSRv2 dataset (Hamill et al. 2013; Sharma

et al. 2017). As part of our experimental setting, we em-

ployed 24-h precipitation accumulations for lead times of

24 to 120h over the U.S. MAR. We used MPEs as the

observed precipitation.

To implement BMA, we first selected the length of

the sliding time window and the number of cells needed

to train the postprocessors. Using the BSS and CRPSS

to assess the skill associated with different window

lengths, we found that generally the optimum value

tended to be ;25 days across lead times and seasons.

Similar results have been reported by others (Fraley

et al. 2010; Sloughter et al. 2007). We note that the

sensitivity of the skill scores to the training window

length was not large. Furthermore, since we used

FIG. 10. Reliability diagrams for the low precipitation threshold (.0mm) in the summer and forecast lead times

of (a) 1 and (b) 5 days. Reliability diagrams for the low precipitation threshold (.0mm) in the fall and forecast lead

times of (c) 1 and (d) 5 days. The different reliability curves represent the raw and postprocessed precipitation

ensembles. The insets show the sample size in logarithmic (base 10) scale of the different forecast probability bins.

MAY 2017 YANG ET AL . 1653

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/26/24 03:55 PM UTC



training data from different years to train the BMA, the

effective training length is much greater than 25 days.

In terms of the number of cells, we found that training

each cell in the GEFSRv2 separately yielded slightly

more skillful forecasts than when spatially pooling data

from several cells. This may be partly the case here

since we sampled data from the previous four years

when training the postprocessors, which potentially

makes spatial pooling less effective. But relying on past

forecasts to train the postprocessors may not always be

feasible, particularly when dealing with operational

forecasting systems. To implement HCLR, we used the

same sliding window approach as in BMA with the

same window length of 25 days and training each

GEFSRv2 cell separately. We observed that the effect

of the window length on the performance of HCLRwas

not significant. Thus, the same length was used to train

both BMA and HCLR.

We used the BSS, CRPSS, and reliability diagrams,

conditioned upon the lead time, precipitation threshold,

and season, to compare against the raw ensembles and

each other the BMA, and HCLR postprocessors. From

this comparison, we found that overall there is a slight

tendency for HCLR to outperform BMA but the dif-

ferences appear to be not as significant. They become

more apparent at the longer forecast lead times (e.g.,

5 days) during both the summer and fall.

Although the differences in performance between

BMA and HCLR are not as significant, there are other

modeling and implementation differences between

the two postprocessors that are worth emphasizing.

One key difference between BMA and HCLR lies in

the predictive pdfs that the postprocessors use. BMA

uses a mixed pdf comprising a gamma pdf for the

transformed precipitation amounts that are greater

than zero and a standard logistic pdf for the point mass

at zero. While HCLR uses a censored logistic pdf for

all the transformed precipitation amounts. Although

the predictive pdfs used by BMA and HCRL have a

similar form (point mass at zero with continuous pdf

for precipitation values greater than zero), the pdf

used by BMA is generally more flexible than that of

HCLR, but it also requires the estimation of a greater

number of parameters. For the case of exchangeable

members, BMA requires 7 parameters plus the

member weights (11 in this case); in contrast, HCLR

FIG. 11. Reliability diagrams for the high precipitation threshold (.10mm) in the summer and forecast lead times

of (a) 1 and (b) 5 days. Reliability diagrams for the high precipitation threshold (.10mm) in the fall and forecast lead

times of (c) 1 and (d) 5 days. The different reliability curves represent the raw and postprocessed precipitation

ensembles. The insets show the sample size in logarithmic scale of the different forecast probability bins.
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requires only 4 parameters. The use of a greater

number of parameters makes BMA a more complex

model than HCLR. Note that here the additional

model flexibility and complexity of BMA is not able

to improve ensembles beyond the level provided by

HCLR (e.g., Figs. 7–9). This suggests that such flexi-

bility and complexity may not be necessary or war-

ranted in this case. Additionally, when the training

dataset is small, the use of too many model parame-

ters could lead to overfitting. There are, nonetheless,

important advantages to the BMA postprocessor that

were not evaluated in our case study, such as the

possibility to represent multimodal predictive pdfs

and to allow, in a consistent manner, the in-

corporation of ensembles members from different

forecasting systems.

Another difference between the two postprocessors

is in the way they consider the ensemble spread. In

BMA, the individual ensemble members are dressed

with the predictive pdf. Thus, if the raw ensembles are

very different from each other (i.e., the spread is wide),

the BMA will yield wider predictive distributions,

likely characterized by multimodality (Raftery et al.

2005). In the case of HCLR, the ensemble spread is

adjusted directly, which may be a desirable trait since

this is an ensemble feature that often requires signifi-

cant manipulation.

5. Conclusions

Based on our study results, the following main con-

clusions are emphasized:

d In terms of the forecast skill (i.e., BSS and CRPSS),

the postprocessors show significant gains relative to

the raw ensembles in the summer across lead times

while gains are less significant in the fall. But overall

the raw and postprocessed ensembles are more skillful

in the fall than summer. This is probably due to the

nature of summertime precipitation as being more

convective, and therefore less predictable, whereas

fall precipitation tends to be more organized at

synoptic (larger) scales.
d The reliability diagrams showed that the postproces-

sors are able to correct biases in the raw ensembles

that ultimately make the postprocessed ensembles

more reliable than the raw ones across lead times,

precipitation thresholds, and seasons. Both postpro-

cessors result in forecasts with similar reliability.
d By decomposing the CRPS into a reliability (CRPSrel)

and potential (CRPSpot) component, we were able to

examinemore carefully the differences betweenBMA

andHCLR. From this, we observed that the improved

performance of HCLR over that of BMA is due to

having a lower CRPSpot. Indeed, the CRPSrel compo-

nent tends to be slightly lower (better) for BMA than

HCLR. We also note that, based on the decomposi-

tion of the CRPS, HCLR is the only postprocessor to

consistently improve upon the raw ensembles across

lead times and seasons.
d In summary, based on our analysis and comparison,

we found that generally the postprocessors perform

similarly. A future alternative could be to combine the

strengths of both BMA and HCLR (e.g., by using

HCLR to determine the predictive pdf of each fore-

casting system and BMA to weight the pdfs). How-

ever, this may come at a considerable computational

cost, particularly when considering a range of lead

times and multiyear reforecasts datasets. Another

option that could be explored is to apply the HCLR

postprocessor to each individual ensemble member

rather than relying on the mean of the ensemble

forecasts, this could be used to implement HCLR

with different forecasting systems.

Acknowledgments. The second, third, and last author

gratefully acknowledge the funding support provided by

the NOAA’s NWS through Award NA14NWS4680012.

The authors also acknowledge the computational sup-

port provided by the Institute for CyberScience at The

Pennsylvania State University.

APPENDIX

Verification Metrics

a. Brier skill score (BSS)

TheBrier score (BS) is analogous to themean squared

error, but where the forecast is a probability and the

observation is either a 0 or 1 (Brown et al. 2010). The BS

is given by

BS5
1

n
�
n

i51

[F
Xi
(q)2F

Yi
(q)]2 , (A1)

where the probability of Xi to exceed a fixed threshold

q is

F
Xi
(q)5P(X

i
.q) , (A2)

n is again the total number of forecast–observation

pairs, and

F
Yi
(q)5

�
1, Y

i
. q ;

0, otherwise.
(A3)
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To compare the skill score of the main forecast system

with respect to the reference forecast, it is convenient to

define the Brier skill score (BSS):

BSS5 12
BS

main

BS
reference

, (A4)

where BSmain and BSreference are the BS values for the

main forecasting system (i.e., the system to be evalu-

ated) and reference forecasting system, respectively.

Any positive values of the BSS, from 0 to 1, indicate that

the main forecasting system performed better than the

reference forecasting system. Thus, a BSS of 0 indicates

no skill and a BSS of 1 indicates perfect skill.

b. Reliability diagram

As suggested by Murphy (1973), the BS can be fur-

ther decomposed into a reliability, resolution and un-

certainty component. In this study, instead of using the

decomposed BS to quantify the reliability and resolu-

tion of the forecasts, we use the so-called reliability

diagram. The reliability diagram shows the full joint

distribution of forecasts and observations to reveal the

reliability of the probability forecasts. For the forecast

values portioned into bin Bk and defined by the ex-

ceedance of threshold q, the average forecast proba-

bility can be expressed as

F
Xk
(q)5

1

jI
k
j�Ik

F
Xi
(q), where I

k
5fi:X

i
2B

k
g , (A5)

where Ik is the collection of all indices i for whichXi falls

into binBk, and jIkj denotes the number of elements in Ik.

The corresponding fraction of observations that fall in the

kth bin is given by

F
Yk
(q)5

1

jI
k
j�Ik

F
Yi
(q), where F

Yi
(q)5

�
1, Y

i
. q ;

0, otherwise.

(A6)

The reliability diagram plots FXk
(q) against FYk

(q).

c. Mean continuous ranked probability skill score
(CRPSS)

The continuous ranked probability score (CRPS),

which is less sensitive to sampling uncertainty, is used to

measure the integrated square difference between the

cumulative distribution function (cdf) of a forecast Fx(q),

and the corresponding cdf of the observation Fy(q). The

CRPS is given by

CRPS5

ð‘
2‘

[F
x
(q)2F

y
(q)]2 dq . (A7)

To evaluate the skill of the main forecasting system

relative to the reference forecast system, the associated

skill score, the mean continuous ranked probability skill

score (CRPSS), is defined as

CRPSS5 12
CRPS

main

CRPS
reference

, (A8)

where CRPS is averaged across n pairs of forecasts and

observations to calculate the mean CRPS of the main

forecast system (CRPSmain) and reference forecast system

(CRPSreference). The CRPSS ranges from 2‘ to 1, with

negative scores indicating that the system to be evaluated

has worse CRPS than the reference forecasting system,

while positive scores indicate a higher skill for the main

forecasting system in comparison to the reference fore-

casting system, with 1 indicating perfect skill.

Additionally, to further explore the effect of post-

processing on forecast skill, we separate the CRPSmain

into different components according to the procedure

developed by Hersbach (2000). Specifically, we consider

the CRPS reliability (CRPSrel) and potential (CRPSpot)

such that

CRPS
main

5CRPS
rel
1CRPS

pot
. (A9)

The CRPSrel measures the ability of the precipitation

ensembles to generate cumulative distributions that

have, on average, the correct or desired statistical

properties. The reliability is closely connected to the

rank histogram, which shows whether the frequency that

the verifying analysis was found in a given bin is equal

for all bins (Hersbach 2000). The CRPSpot measures the

CRPS that one would obtain for a perfect reliable sys-

tem. It is sensitive to the average spread of the ensemble

and outliers. For instance, the narrower the spread of the

ensemble is, the smaller the CRPSpot becomes. As in-

dicated by Hersbach (2000), provided a certain degree

of unpredictability, a balance between the ensemble

spread and the statistics of outliers will result in the

optimal value of the CRPSpot.
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